Metamath Proof Explorer


Theorem frege57c

Description: Swap order of implication in ax-frege52c . Proposition 57 of Frege1879 p. 51. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege57c.a
|- A e. C
Assertion frege57c
|- ( A = B -> ( [. B / x ]. ph -> [. A / x ]. ph ) )

Proof

Step Hyp Ref Expression
1 frege57c.a
 |-  A e. C
2 ax-frege52c
 |-  ( B = A -> ( [. B / x ]. ph -> [. A / x ]. ph ) )
3 1 frege56c
 |-  ( ( B = A -> ( [. B / x ]. ph -> [. A / x ]. ph ) ) -> ( A = B -> ( [. B / x ]. ph -> [. A / x ]. ph ) ) )
4 2 3 ax-mp
 |-  ( A = B -> ( [. B / x ]. ph -> [. A / x ]. ph ) )