Metamath Proof Explorer


Theorem frege57c

Description: Swap order of implication in ax-frege52c . Proposition 57 of Frege1879 p. 51. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege57c.a 𝐴𝐶
Assertion frege57c ( 𝐴 = 𝐵 → ( [ 𝐵 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 frege57c.a 𝐴𝐶
2 ax-frege52c ( 𝐵 = 𝐴 → ( [ 𝐵 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
3 1 frege56c ( ( 𝐵 = 𝐴 → ( [ 𝐵 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) ) → ( 𝐴 = 𝐵 → ( [ 𝐵 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) ) )
4 2 3 ax-mp ( 𝐴 = 𝐵 → ( [ 𝐵 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )