Description: Lemma for frege57c . Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frege56c.b | |- B e. C |
|
| Assertion | frege56c | |- ( ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) -> ( B = A -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege56c.b | |- B e. C |
|
| 2 | 1 | frege54cor1c | |- [. B / x ]. x = B |
| 3 | frege53c | |- ( [. B / x ]. x = B -> ( B = A -> [. A / x ]. x = B ) ) |
|
| 4 | 2 3 | ax-mp | |- ( B = A -> [. A / x ]. x = B ) |
| 5 | frege55lem1c | |- ( ( B = A -> [. A / x ]. x = B ) -> ( B = A -> A = B ) ) |
|
| 6 | 4 5 | ax-mp | |- ( B = A -> A = B ) |
| 7 | frege9 | |- ( ( B = A -> A = B ) -> ( ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) -> ( B = A -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) ) ) |
|
| 8 | 6 7 | ax-mp | |- ( ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) -> ( B = A -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) ) |