Metamath Proof Explorer


Theorem frege56c

Description: Lemma for frege57c . Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege56c.b
|- B e. C
Assertion frege56c
|- ( ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) -> ( B = A -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) )

Proof

Step Hyp Ref Expression
1 frege56c.b
 |-  B e. C
2 1 frege54cor1c
 |-  [. B / x ]. x = B
3 frege53c
 |-  ( [. B / x ]. x = B -> ( B = A -> [. A / x ]. x = B ) )
4 2 3 ax-mp
 |-  ( B = A -> [. A / x ]. x = B )
5 frege55lem1c
 |-  ( ( B = A -> [. A / x ]. x = B ) -> ( B = A -> A = B ) )
6 4 5 ax-mp
 |-  ( B = A -> A = B )
7 frege9
 |-  ( ( B = A -> A = B ) -> ( ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) -> ( B = A -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) ) )
8 6 7 ax-mp
 |-  ( ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) -> ( B = A -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) )