Metamath Proof Explorer


Theorem frege56c

Description: Lemma for frege57c . Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege56c.b BC
Assertion frege56c A=B[˙A/x]˙φ[˙B/x]˙φB=A[˙A/x]˙φ[˙B/x]˙φ

Proof

Step Hyp Ref Expression
1 frege56c.b BC
2 1 frege54cor1c [˙B/x]˙x=B
3 frege53c [˙B/x]˙x=BB=A[˙A/x]˙x=B
4 2 3 ax-mp B=A[˙A/x]˙x=B
5 frege55lem1c B=A[˙A/x]˙x=BB=AA=B
6 4 5 ax-mp B=AA=B
7 frege9 B=AA=BA=B[˙A/x]˙φ[˙B/x]˙φB=A[˙A/x]˙φ[˙B/x]˙φ
8 6 7 ax-mp A=B[˙A/x]˙φ[˙B/x]˙φB=A[˙A/x]˙φ[˙B/x]˙φ