Metamath Proof Explorer


Theorem frege56c

Description: Lemma for frege57c . Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege56c.b B C
Assertion frege56c A = B [˙A / x]˙ φ [˙B / x]˙ φ B = A [˙A / x]˙ φ [˙B / x]˙ φ

Proof

Step Hyp Ref Expression
1 frege56c.b B C
2 1 frege54cor1c [˙B / x]˙ x = B
3 frege53c [˙B / x]˙ x = B B = A [˙A / x]˙ x = B
4 2 3 ax-mp B = A [˙A / x]˙ x = B
5 frege55lem1c B = A [˙A / x]˙ x = B B = A A = B
6 4 5 ax-mp B = A A = B
7 frege9 B = A A = B A = B [˙A / x]˙ φ [˙B / x]˙ φ B = A [˙A / x]˙ φ [˙B / x]˙ φ
8 6 7 ax-mp A = B [˙A / x]˙ φ [˙B / x]˙ φ B = A [˙A / x]˙ φ [˙B / x]˙ φ