Metamath Proof Explorer


Theorem frege72

Description: If property A is hereditary in the R -sequence, if x has property A , and if y is a result of an application of the procedure R to x , then y has property A . Proposition 72 of Frege1879 p. 59. (Contributed by RP, 28-Mar-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege72.x XU
frege72.y YV
Assertion frege72 RhereditaryAXAXRYYA

Proof

Step Hyp Ref Expression
1 frege72.x XU
2 frege72.y YV
3 2 frege58c zXRzzA[˙Y/z]˙XRzzA
4 sbcim1 [˙Y/z]˙XRzzA[˙Y/z]˙XRz[˙Y/z]˙zA
5 sbcbr2g YV[˙Y/z]˙XRzXRY/zz
6 csbvarg YVY/zz=Y
7 6 breq2d YVXRY/zzXRY
8 5 7 bitrd YV[˙Y/z]˙XRzXRY
9 2 8 ax-mp [˙Y/z]˙XRzXRY
10 sbcel1v [˙Y/z]˙zAYA
11 4 9 10 3imtr3g [˙Y/z]˙XRzzAXRYYA
12 3 11 syl zXRzzAXRYYA
13 1 frege71 zXRzzAXRYYARhereditaryAXAXRYYA
14 12 13 ax-mp RhereditaryAXAXRYYA