Metamath Proof Explorer


Theorem frege98

Description: If Y follows X and Z follows Y in the R -sequence then Z follows X in the R -sequence because the transitive closure of a relation has the transitive property. Proposition 98 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020) (Revised by RP, 6-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege98.x XA
frege98.y YB
frege98.z ZC
frege98.r RD
Assertion frege98 Xt+RYYt+RZXt+RZ

Proof

Step Hyp Ref Expression
1 frege98.x XA
2 frege98.y YB
3 frege98.z ZC
4 frege98.r RD
5 1 4 frege97 Rhereditaryt+RX
6 fvex t+RV
7 imaexg t+RVt+RXV
8 6 7 ax-mp t+RXV
9 2 3 4 8 frege84 Rhereditaryt+RXYt+RXYt+RZZt+RX
10 5 9 ax-mp Yt+RXYt+RZZt+RX
11 1 elexi XV
12 2 elexi YV
13 11 12 elimasn Yt+RXXYt+R
14 df-br Xt+RYXYt+R
15 13 14 bitr4i Yt+RXXt+RY
16 3 elexi ZV
17 11 16 elimasn Zt+RXXZt+R
18 df-br Xt+RZXZt+R
19 17 18 bitr4i Zt+RXXt+RZ
20 19 imbi2i Yt+RZZt+RXYt+RZXt+RZ
21 10 15 20 3imtr3i Xt+RYYt+RZXt+RZ