Metamath Proof Explorer


Theorem fresf1o

Description: Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Assertion fresf1o FunFCranFFunF-1CFF-1C:F-1C1-1 ontoC

Proof

Step Hyp Ref Expression
1 funfn FunF-1CF-1CFndomF-1C
2 1 biimpi FunF-1CF-1CFndomF-1C
3 2 3ad2ant3 FunFCranFFunF-1CF-1CFndomF-1C
4 simp2 FunFCranFFunF-1CCranF
5 df-rn ranF=domF-1
6 4 5 sseqtrdi FunFCranFFunF-1CCdomF-1
7 ssdmres CdomF-1domF-1C=C
8 6 7 sylib FunFCranFFunF-1CdomF-1C=C
9 8 fneq2d FunFCranFFunF-1CF-1CFndomF-1CF-1CFnC
10 3 9 mpbid FunFCranFFunF-1CF-1CFnC
11 simp1 FunFCranFFunF-1CFunF
12 11 funresd FunFCranFFunF-1CFunFF-1C
13 funcnvres2 FunFF-1C-1=FF-1C
14 11 13 syl FunFCranFFunF-1CF-1C-1=FF-1C
15 14 funeqd FunFCranFFunF-1CFunF-1C-1FunFF-1C
16 12 15 mpbird FunFCranFFunF-1CFunF-1C-1
17 df-ima F-1C=ranF-1C
18 17 eqcomi ranF-1C=F-1C
19 18 a1i FunFCranFFunF-1CranF-1C=F-1C
20 dff1o2 F-1C:C1-1 ontoF-1CF-1CFnCFunF-1C-1ranF-1C=F-1C
21 10 16 19 20 syl3anbrc FunFCranFFunF-1CF-1C:C1-1 ontoF-1C
22 f1ocnv F-1C:C1-1 ontoF-1CF-1C-1:F-1C1-1 ontoC
23 21 22 syl FunFCranFFunF-1CF-1C-1:F-1C1-1 ontoC
24 f1oeq1 F-1C-1=FF-1CF-1C-1:F-1C1-1 ontoCFF-1C:F-1C1-1 ontoC
25 11 13 24 3syl FunFCranFFunF-1CF-1C-1:F-1C1-1 ontoCFF-1C:F-1C1-1 ontoC
26 23 25 mpbid FunFCranFFunF-1CFF-1C:F-1C1-1 ontoC