Metamath Proof Explorer


Theorem frfnom

Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion frfnom recFAωFnω

Proof

Step Hyp Ref Expression
1 rdgfun FunrecFA
2 funres FunrecFAFunrecFAω
3 1 2 ax-mp FunrecFAω
4 dmres domrecFAω=ωdomrecFA
5 rdgdmlim LimdomrecFA
6 limomss LimdomrecFAωdomrecFA
7 5 6 ax-mp ωdomrecFA
8 df-ss ωdomrecFAωdomrecFA=ω
9 7 8 mpbi ωdomrecFA=ω
10 4 9 eqtri domrecFAω=ω
11 df-fn recFAωFnωFunrecFAωdomrecFAω=ω
12 3 10 11 mpbir2an recFAωFnω