Metamath Proof Explorer


Theorem frgrncvvdeqlem4

Description: Lemma 4 for frgrncvvdeq . The mapping of neighbors to neighbors is a function. (Contributed by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1 V=VtxG
frgrncvvdeq.e E=EdgG
frgrncvvdeq.nx D=GNeighbVtxX
frgrncvvdeq.ny N=GNeighbVtxY
frgrncvvdeq.x φXV
frgrncvvdeq.y φYV
frgrncvvdeq.ne φXY
frgrncvvdeq.xy φYD
frgrncvvdeq.f φGFriendGraph
frgrncvvdeq.a A=xDιyN|xyE
Assertion frgrncvvdeqlem4 φA:DN

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V=VtxG
2 frgrncvvdeq.e E=EdgG
3 frgrncvvdeq.nx D=GNeighbVtxX
4 frgrncvvdeq.ny N=GNeighbVtxY
5 frgrncvvdeq.x φXV
6 frgrncvvdeq.y φYV
7 frgrncvvdeq.ne φXY
8 frgrncvvdeq.xy φYD
9 frgrncvvdeq.f φGFriendGraph
10 frgrncvvdeq.a A=xDιyN|xyE
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem2 φxD∃!yNxyE
12 riotacl ∃!yNxyEιyN|xyEN
13 11 12 syl φxDιyN|xyEN
14 13 10 fmptd φA:DN