Metamath Proof Explorer


Theorem frmy

Description: The Y sequence is an integer. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion frmy Yrm:2×

Proof

Step Hyp Ref Expression
1 rmxyelxp a2bc0×1stc+a212ndc-1a+a21b0×
2 xp2nd c0×1stc+a212ndc-1a+a21b0×2ndc0×1stc+a212ndc-1a+a21b
3 1 2 syl a2b2ndc0×1stc+a212ndc-1a+a21b
4 3 rgen2 a2b2ndc0×1stc+a212ndc-1a+a21b
5 df-rmy Yrm=a2,b2ndc0×1stc+a212ndc-1a+a21b
6 5 fmpo a2b2ndc0×1stc+a212ndc-1a+a21bYrm:2×
7 4 6 mpbi Yrm:2×