Metamath Proof Explorer


Theorem frrrel

Description: Show without using the axiom of replacement that the well-founded recursion generator gives a relation. (Contributed by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis frrrel.1 F = frecs R A G
Assertion frrrel Rel F

Proof

Step Hyp Ref Expression
1 frrrel.1 F = frecs R A G
2 eqid f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
3 2 1 frrlem6 Rel F