Metamath Proof Explorer


Theorem frsucmpt

Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003) (Revised by Scott Fenton, 2-Nov-2011)

Ref Expression
Hypotheses frsucmpt.1 _xA
frsucmpt.2 _xB
frsucmpt.3 _xD
frsucmpt.4 F=recxVCAω
frsucmpt.5 x=FBC=D
Assertion frsucmpt BωDVFsucB=D

Proof

Step Hyp Ref Expression
1 frsucmpt.1 _xA
2 frsucmpt.2 _xB
3 frsucmpt.3 _xD
4 frsucmpt.4 F=recxVCAω
5 frsucmpt.5 x=FBC=D
6 frsuc BωrecxVCAωsucB=xVCrecxVCAωB
7 4 fveq1i FsucB=recxVCAωsucB
8 4 fveq1i FB=recxVCAωB
9 8 fveq2i xVCFB=xVCrecxVCAωB
10 6 7 9 3eqtr4g BωFsucB=xVCFB
11 fvex FBV
12 nfmpt1 _xxVC
13 12 1 nfrdg _xrecxVCA
14 nfcv _xω
15 13 14 nfres _xrecxVCAω
16 4 15 nfcxfr _xF
17 16 2 nffv _xFB
18 eqid xVC=xVC
19 17 3 5 18 fvmptf FBVDVxVCFB=D
20 11 19 mpan DVxVCFB=D
21 10 20 sylan9eq BωDVFsucB=D