Metamath Proof Explorer


Theorem fsovfd

Description: The operator, ( A O B ) , which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, A and B , gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021)

Ref Expression
Hypotheses fsovd.fs O = a V , b V f 𝒫 b a y b x a | y f x
fsovd.a φ A V
fsovd.b φ B W
fsovfvd.g G = A O B
Assertion fsovfd φ G : 𝒫 B A 𝒫 A B

Proof

Step Hyp Ref Expression
1 fsovd.fs O = a V , b V f 𝒫 b a y b x a | y f x
2 fsovd.a φ A V
3 fsovd.b φ B W
4 fsovfvd.g G = A O B
5 1 2 3 fsovd φ A O B = f 𝒫 B A y B x A | y f x
6 4 5 syl5eq φ G = f 𝒫 B A y B x A | y f x
7 ssrab2 x A | y f x A
8 7 a1i φ x A | y f x A
9 2 8 sselpwd φ x A | y f x 𝒫 A
10 9 adantr φ y B x A | y f x 𝒫 A
11 10 fmpttd φ y B x A | y f x : B 𝒫 A
12 2 pwexd φ 𝒫 A V
13 12 3 elmapd φ y B x A | y f x 𝒫 A B y B x A | y f x : B 𝒫 A
14 11 13 mpbird φ y B x A | y f x 𝒫 A B
15 14 adantr φ f 𝒫 B A y B x A | y f x 𝒫 A B
16 6 15 fmpt3d φ G : 𝒫 B A 𝒫 A B