| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumm1.1 |
|
| 2 |
|
fsumm1.2 |
|
| 3 |
|
fsum1p.3 |
|
| 4 |
|
eluzel2 |
|
| 5 |
1 4
|
syl |
|
| 6 |
|
fzsn |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
ineq1d |
|
| 9 |
5
|
zred |
|
| 10 |
9
|
ltp1d |
|
| 11 |
|
fzdisj |
|
| 12 |
10 11
|
syl |
|
| 13 |
8 12
|
eqtr3d |
|
| 14 |
|
eluzfz1 |
|
| 15 |
1 14
|
syl |
|
| 16 |
|
fzsplit |
|
| 17 |
15 16
|
syl |
|
| 18 |
7
|
uneq1d |
|
| 19 |
17 18
|
eqtrd |
|
| 20 |
|
fzfid |
|
| 21 |
13 19 20 2
|
fsumsplit |
|
| 22 |
3
|
eleq1d |
|
| 23 |
2
|
ralrimiva |
|
| 24 |
22 23 15
|
rspcdva |
|
| 25 |
3
|
sumsn |
|
| 26 |
5 24 25
|
syl2anc |
|
| 27 |
26
|
oveq1d |
|
| 28 |
21 27
|
eqtrd |
|