Metamath Proof Explorer


Theorem fsumcom

Description: Interchange order of summation. (Contributed by NM, 15-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsumcom.1 φAFin
fsumcom.2 φBFin
fsumcom.3 φjAkBC
Assertion fsumcom φjAkBC=kBjAC

Proof

Step Hyp Ref Expression
1 fsumcom.1 φAFin
2 fsumcom.2 φBFin
3 fsumcom.3 φjAkBC
4 2 adantr φjABFin
5 ancom jAkBkBjA
6 5 a1i φjAkBkBjA
7 1 2 4 6 3 fsumcom2 φjAkBC=kBjAC