Metamath Proof Explorer


Theorem fsumdifsnconst

Description: The sum of constant terms ( k is not free in C ) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022)

Ref Expression
Assertion fsumdifsnconst AFinBACkABC=A1C

Proof

Step Hyp Ref Expression
1 diffi AFinABFin
2 1 anim1i AFinCABFinC
3 2 3adant2 AFinBACABFinC
4 fsumconst ABFinCkABC=ABC
5 3 4 syl AFinBACkABC=ABC
6 hashdifsn AFinBAAB=A1
7 6 3adant3 AFinBACAB=A1
8 7 oveq1d AFinBACABC=A1C
9 5 8 eqtrd AFinBACkABC=A1C