Metamath Proof Explorer


Theorem fsumle

Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumle.1 φAFin
fsumle.2 φkAB
fsumle.3 φkAC
fsumle.4 φkABC
Assertion fsumle φkABkAC

Proof

Step Hyp Ref Expression
1 fsumle.1 φAFin
2 fsumle.2 φkAB
3 fsumle.3 φkAC
4 fsumle.4 φkABC
5 3 2 resubcld φkACB
6 3 2 subge0d φkA0CBBC
7 4 6 mpbird φkA0CB
8 1 5 7 fsumge0 φ0kACB
9 3 recnd φkAC
10 2 recnd φkAB
11 1 9 10 fsumsub φkACB=kACkAB
12 8 11 breqtrd φ0kACkAB
13 1 3 fsumrecl φkAC
14 1 2 fsumrecl φkAB
15 13 14 subge0d φ0kACkABkABkAC
16 12 15 mpbid φkABkAC