Metamath Proof Explorer


Theorem fsumrpcl

Description: Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses fsumcl.1 φAFin
fsumrpcl.2 φA
fsumrpcl.3 φkAB+
Assertion fsumrpcl φkAB+

Proof

Step Hyp Ref Expression
1 fsumcl.1 φAFin
2 fsumrpcl.2 φA
3 fsumrpcl.3 φkAB+
4 rpssre +
5 ax-resscn
6 4 5 sstri +
7 6 a1i φ+
8 rpaddcl x+y+x+y+
9 8 adantl φx+y+x+y+
10 7 9 1 3 2 fsumcl2lem φkAB+