Metamath Proof Explorer


Theorem fsumshft

Description: Index shift of a finite sum. (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014) (Proof shortened by AV, 8-Sep-2019)

Ref Expression
Hypotheses fsumrev.1 φK
fsumrev.2 φM
fsumrev.3 φN
fsumrev.4 φjMNA
fsumshft.5 j=kKA=B
Assertion fsumshft φj=MNA=k=M+KN+KB

Proof

Step Hyp Ref Expression
1 fsumrev.1 φK
2 fsumrev.2 φM
3 fsumrev.3 φN
4 fsumrev.4 φjMNA
5 fsumshft.5 j=kKA=B
6 fzfid φM+KN+KFin
7 1 2 3 mptfzshft φjM+KN+KjK:M+KN+K1-1 ontoMN
8 oveq1 j=kjK=kK
9 eqid jM+KN+KjK=jM+KN+KjK
10 ovex kKV
11 8 9 10 fvmpt kM+KN+KjM+KN+KjKk=kK
12 11 adantl φkM+KN+KjM+KN+KjKk=kK
13 5 6 7 12 4 fsumf1o φj=MNA=k=M+KN+KB