Metamath Proof Explorer


Theorem fsumzcl2

Description: A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018)

Ref Expression
Assertion fsumzcl2 AFinkABkAB

Proof

Step Hyp Ref Expression
1 nfcv _xB
2 nfcsb1v _kx/kB
3 csbeq1a k=xB=x/kB
4 1 2 3 cbvsumi kAB=xAx/kB
5 simpl AFinkABAFin
6 rspcsbela xAkABx/kB
7 6 expcom kABxAx/kB
8 7 adantl AFinkABxAx/kB
9 8 imp AFinkABxAx/kB
10 5 9 fsumzcl AFinkABxAx/kB
11 4 10 eqeltrid AFinkABkAB