Metamath Proof Explorer


Theorem fsuppfund

Description: A finitely supported function is a function. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypothesis fsuppfund.1 φfinSuppZF
Assertion fsuppfund φFunF

Proof

Step Hyp Ref Expression
1 fsuppfund.1 φfinSuppZF
2 fsuppimp finSuppZFFunFFsuppZFin
3 2 simpld finSuppZFFunF
4 1 3 syl φFunF