Metamath Proof Explorer


Theorem fuco11id

Description: The identity morphism of the mapped object. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco11.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco11.f φ F C Func D G
fuco11.k φ K D Func E L
fuco11.u φ U = K L F G
fuco11id.q Q = C FuncCat E
fuco11id.i I = Id Q
fuco11id.1 1 ˙ = Id E
Assertion fuco11id φ I O U = 1 ˙ K F

Proof

Step Hyp Ref Expression
1 fuco11.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco11.f φ F C Func D G
3 fuco11.k φ K D Func E L
4 fuco11.u φ U = K L F G
5 fuco11id.q Q = C FuncCat E
6 fuco11id.i I = Id Q
7 fuco11id.1 1 ˙ = Id E
8 1 2 3 4 fuco11cl φ O U C Func E
9 5 6 7 8 fucid φ I O U = 1 ˙ 1 st O U
10 1 2 3 4 fuco111 φ 1 st O U = K F
11 10 coeq2d φ 1 ˙ 1 st O U = 1 ˙ K F
12 9 11 eqtrd φ I O U = 1 ˙ K F