Metamath Proof Explorer


Theorem fuco11idx

Description: The identity morphism of the mapped object. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco11.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco11.f φ F C Func D G
fuco11.k φ K D Func E L
fuco11.u φ U = K L F G
fuco11id.q Q = C FuncCat E
fuco11id.i I = Id Q
fuco11id.1 1 ˙ = Id E
fuco11idx.x φ X Base C
Assertion fuco11idx φ I O U X = 1 ˙ K F X

Proof

Step Hyp Ref Expression
1 fuco11.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco11.f φ F C Func D G
3 fuco11.k φ K D Func E L
4 fuco11.u φ U = K L F G
5 fuco11id.q Q = C FuncCat E
6 fuco11id.i I = Id Q
7 fuco11id.1 1 ˙ = Id E
8 fuco11idx.x φ X Base C
9 1 2 3 4 5 6 7 fuco11id φ I O U = 1 ˙ K F
10 coass 1 ˙ K F = 1 ˙ K F
11 9 10 eqtr4di φ I O U = 1 ˙ K F
12 11 fveq1d φ I O U X = 1 ˙ K F X
13 eqid Base C = Base C
14 eqid Base D = Base D
15 13 14 2 funcf1 φ F : Base C Base D
16 15 8 fvco3d φ 1 ˙ K F X = 1 ˙ K F X
17 eqid Base E = Base E
18 14 17 3 funcf1 φ K : Base D Base E
19 15 8 ffvelcdmd φ F X Base D
20 18 19 fvco3d φ 1 ˙ K F X = 1 ˙ K F X
21 12 16 20 3eqtrd φ I O U X = 1 ˙ K F X