Metamath Proof Explorer


Theorem fucoelvv

Description: A functor composition bifunctor is an ordered pair. Enables 1st2ndb . (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fucofval.c φ C T
fucofval.d φ D U
fucofval.e φ E V
fucofval.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = .o. ) with typecode |-
Assertion fucoelvv Could not format assertion : No typesetting found for |- ( ph -> .o. e. ( _V X. _V ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 fucofval.c φ C T
2 fucofval.d φ D U
3 fucofval.e φ E V
4 fucofval.o Could not format ( ph -> ( <. C , D >. o.F E ) = .o. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = .o. ) with typecode |-
5 eqidd φ D Func E × C Func D = D Func E × C Func D
6 1 2 3 4 5 fucofval Could not format ( ph -> .o. = <. ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) , ( u e. ( ( D Func E ) X. ( C Func D ) ) , v e. ( ( D Func E ) X. ( C Func D ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) : No typesetting found for |- ( ph -> .o. = <. ( o.func |` ( ( D Func E ) X. ( C Func D ) ) ) , ( u e. ( ( D Func E ) X. ( C Func D ) ) , v e. ( ( D Func E ) X. ( C Func D ) ) |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) with typecode |-
7 df-cofu func = g V , f V 1 st g 1 st f x dom dom 2 nd f , y dom dom 2 nd f 1 st f x 2 nd g 1 st f y x 2 nd f y
8 7 mpofun Fun func
9 ovex D Func E V
10 ovex C Func D V
11 9 10 xpex D Func E × C Func D V
12 resfunexg Fun func D Func E × C Func D V func D Func E × C Func D V
13 8 11 12 mp2an func D Func E × C Func D V
14 11 11 mpoex u D Func E × C Func D , v D Func E × C Func D 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x V
15 13 14 opelvv func D Func E × C Func D u D Func E × C Func D , v D Func E × C Func D 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x V × V
16 6 15 eqeltrdi Could not format ( ph -> .o. e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> .o. e. ( _V X. _V ) ) with typecode |-