Metamath Proof Explorer


Theorem fullfo

Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfull.b B=BaseC
isfull.j J=HomD
isfull.h H=HomC
fullfo.f φFCFullDG
fullfo.x φXB
fullfo.y φYB
Assertion fullfo φXGY:XHYontoFXJFY

Proof

Step Hyp Ref Expression
1 isfull.b B=BaseC
2 isfull.j J=HomD
3 isfull.h H=HomC
4 fullfo.f φFCFullDG
5 fullfo.x φXB
6 fullfo.y φYB
7 1 2 3 isfull2 FCFullDGFCFuncDGxByBxGy:xHyontoFxJFy
8 7 simprbi FCFullDGxByBxGy:xHyontoFxJFy
9 4 8 syl φxByBxGy:xHyontoFxJFy
10 6 adantr φx=XYB
11 simplr φx=Xy=Yx=X
12 simpr φx=Xy=Yy=Y
13 11 12 oveq12d φx=Xy=YxGy=XGY
14 11 12 oveq12d φx=Xy=YxHy=XHY
15 11 fveq2d φx=Xy=YFx=FX
16 12 fveq2d φx=Xy=YFy=FY
17 15 16 oveq12d φx=Xy=YFxJFy=FXJFY
18 13 14 17 foeq123d φx=Xy=YxGy:xHyontoFxJFyXGY:XHYontoFXJFY
19 10 18 rspcdv φx=XyBxGy:xHyontoFxJFyXGY:XHYontoFXJFY
20 5 19 rspcimdv φxByBxGy:xHyontoFxJFyXGY:XHYontoFXJFY
21 9 20 mpd φXGY:XHYontoFXJFY