Metamath Proof Explorer


Theorem fun2dmnopgexmpl

Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020) (Avoid depending on this detail.)

Ref Expression
Assertion fun2dmnopgexmpl G = 0 1 1 1 ¬ G V × V

Proof

Step Hyp Ref Expression
1 0ne1 0 1
2 1 neii ¬ 0 = 1
3 2 intnanr ¬ 0 = 1 a = 0
4 3 intnanr ¬ 0 = 1 a = 0 0 = 1 b = 0 1 0 = 1 b = 0 1
5 4 gen2 a b ¬ 0 = 1 a = 0 0 = 1 b = 0 1 0 = 1 b = 0 1
6 eqeq1 G = 0 1 1 1 G = a b 0 1 1 1 = a b
7 c0ex 0 V
8 1ex 1 V
9 vex a V
10 vex b V
11 7 8 8 8 9 10 propeqop 0 1 1 1 = a b 0 = 1 a = 0 0 = 1 b = 0 1 0 = 1 b = 0 1
12 6 11 bitrdi G = 0 1 1 1 G = a b 0 = 1 a = 0 0 = 1 b = 0 1 0 = 1 b = 0 1
13 12 notbid G = 0 1 1 1 ¬ G = a b ¬ 0 = 1 a = 0 0 = 1 b = 0 1 0 = 1 b = 0 1
14 13 2albidv G = 0 1 1 1 a b ¬ G = a b a b ¬ 0 = 1 a = 0 0 = 1 b = 0 1 0 = 1 b = 0 1
15 5 14 mpbiri G = 0 1 1 1 a b ¬ G = a b
16 2nexaln ¬ a b G = a b a b ¬ G = a b
17 15 16 sylibr G = 0 1 1 1 ¬ a b G = a b
18 elvv G V × V a b G = a b
19 17 18 sylnibr G = 0 1 1 1 ¬ G V × V