Metamath Proof Explorer


Theorem funcnvres2

Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005)

Ref Expression
Assertion funcnvres2 FunFF-1A-1=FF-1A

Proof

Step Hyp Ref Expression
1 funcnvcnv FunFFunF-1-1
2 funcnvres FunF-1-1F-1A-1=F-1-1F-1A
3 1 2 syl FunFF-1A-1=F-1-1F-1A
4 funrel FunFRelF
5 dfrel2 RelFF-1-1=F
6 4 5 sylib FunFF-1-1=F
7 6 reseq1d FunFF-1-1F-1A=FF-1A
8 3 7 eqtrd FunFF-1A-1=FF-1A