Metamath Proof Explorer


Theorem funcoppc3

Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o O = oppCat C
funcoppc2.p P = oppCat D
funcoppc2.c φ C V
funcoppc2.d φ D W
funcoppc3.f φ F O Func P tpos G
funcoppc3.g φ G Fn A × B
Assertion funcoppc3 φ F C Func D G

Proof

Step Hyp Ref Expression
1 funcoppc2.o O = oppCat C
2 funcoppc2.p P = oppCat D
3 funcoppc2.c φ C V
4 funcoppc2.d φ D W
5 funcoppc3.f φ F O Func P tpos G
6 funcoppc3.g φ G Fn A × B
7 1 2 3 4 5 funcoppc2 φ F C Func D tpos tpos G
8 fnrel G Fn A × B Rel G
9 6 8 syl φ Rel G
10 relxp Rel A × B
11 6 fndmd φ dom G = A × B
12 11 releqd φ Rel dom G Rel A × B
13 10 12 mpbiri φ Rel dom G
14 tpostpos2 Rel G Rel dom G tpos tpos G = G
15 9 13 14 syl2anc φ tpos tpos G = G
16 7 15 breqtrd φ F C Func D G