Metamath Proof Explorer


Theorem funcringcsetcALTV2lem2

Description: Lemma 2 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R = RingCat U
funcringcsetcALTV2.s S = SetCat U
funcringcsetcALTV2.b B = Base R
funcringcsetcALTV2.c C = Base S
funcringcsetcALTV2.u φ U WUni
funcringcsetcALTV2.f φ F = x B Base x
Assertion funcringcsetcALTV2lem2 φ X B F X U

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R = RingCat U
2 funcringcsetcALTV2.s S = SetCat U
3 funcringcsetcALTV2.b B = Base R
4 funcringcsetcALTV2.c C = Base S
5 funcringcsetcALTV2.u φ U WUni
6 funcringcsetcALTV2.f φ F = x B Base x
7 1 2 3 4 5 6 funcringcsetcALTV2lem1 φ X B F X = Base X
8 1 3 5 ringcbasbas φ X B Base X U
9 7 8 eqeltrd φ X B F X U