Metamath Proof Explorer


Theorem funcringcsetcALTV2lem6

Description: Lemma 6 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R=RingCatU
funcringcsetcALTV2.s S=SetCatU
funcringcsetcALTV2.b B=BaseR
funcringcsetcALTV2.c C=BaseS
funcringcsetcALTV2.u φUWUni
funcringcsetcALTV2.f φF=xBBasex
funcringcsetcALTV2.g φG=xB,yBIxRingHomy
Assertion funcringcsetcALTV2lem6 φXBYBHXRingHomYXGYH=H

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R=RingCatU
2 funcringcsetcALTV2.s S=SetCatU
3 funcringcsetcALTV2.b B=BaseR
4 funcringcsetcALTV2.c C=BaseS
5 funcringcsetcALTV2.u φUWUni
6 funcringcsetcALTV2.f φF=xBBasex
7 funcringcsetcALTV2.g φG=xB,yBIxRingHomy
8 1 2 3 4 5 6 7 funcringcsetcALTV2lem5 φXBYBXGY=IXRingHomY
9 8 3adant3 φXBYBHXRingHomYXGY=IXRingHomY
10 9 fveq1d φXBYBHXRingHomYXGYH=IXRingHomYH
11 fvresi HXRingHomYIXRingHomYH=H
12 11 3ad2ant3 φXBYBHXRingHomYIXRingHomYH=H
13 10 12 eqtrd φXBYBHXRingHomYXGYH=H