Metamath Proof Explorer


Theorem funcringcsetclem5ALTV

Description: Lemma 5 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R = RingCatALTV U
funcringcsetcALTV.s S = SetCat U
funcringcsetcALTV.b B = Base R
funcringcsetcALTV.c C = Base S
funcringcsetcALTV.u φ U WUni
funcringcsetcALTV.f φ F = x B Base x
funcringcsetcALTV.g φ G = x B , y B I x RingHom y
Assertion funcringcsetclem5ALTV φ X B Y B X G Y = I X RingHom Y

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R = RingCatALTV U
2 funcringcsetcALTV.s S = SetCat U
3 funcringcsetcALTV.b B = Base R
4 funcringcsetcALTV.c C = Base S
5 funcringcsetcALTV.u φ U WUni
6 funcringcsetcALTV.f φ F = x B Base x
7 funcringcsetcALTV.g φ G = x B , y B I x RingHom y
8 7 adantr φ X B Y B G = x B , y B I x RingHom y
9 oveq12 x = X y = Y x RingHom y = X RingHom Y
10 9 adantl φ X B Y B x = X y = Y x RingHom y = X RingHom Y
11 10 reseq2d φ X B Y B x = X y = Y I x RingHom y = I X RingHom Y
12 simprl φ X B Y B X B
13 simprr φ X B Y B Y B
14 ovexd φ X B Y B X RingHom Y V
15 14 resiexd φ X B Y B I X RingHom Y V
16 8 11 12 13 15 ovmpod φ X B Y B X G Y = I X RingHom Y