Metamath Proof Explorer


Theorem functermceu

Description: There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses functermceu.c φ C Cat
functermceu.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
Assertion functermceu φ ∃! f f C Func D

Proof

Step Hyp Ref Expression
1 functermceu.c φ C Cat
2 functermceu.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
3 opex Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y V
4 3 a1i φ Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y V
5 eqid Base C = Base C
6 eqid Base D = Base D
7 eqid Hom C = Hom C
8 eqid Hom D = Hom D
9 eqid Base C × Base D = Base C × Base D
10 eqid x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y = x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y
11 1 2 5 6 7 8 9 10 functermc2 φ C Func D = Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y
12 sneq f = Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y f = Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y
13 12 eqeq2d f = Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y C Func D = f C Func D = Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y
14 4 11 13 spcedv φ f C Func D = f
15 eusn ∃! f f C Func D f C Func D = f
16 14 15 sylibr φ ∃! f f C Func D