Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Terminal categories
functermclem
Next ⟩
functermc
Metamath Proof Explorer
Ascii
Unicode
Theorem
functermclem
Description:
Lemma for
functermc
.
(Contributed by
Zhi Wang
, 17-Oct-2025)
Ref
Expression
Hypotheses
functermclem.1
⊢
φ
∧
K
R
L
→
K
=
F
functermclem.2
⊢
φ
→
F
R
L
↔
L
=
G
Assertion
functermclem
⊢
φ
→
K
R
L
↔
K
=
F
∧
L
=
G
Proof
Step
Hyp
Ref
Expression
1
functermclem.1
⊢
φ
∧
K
R
L
→
K
=
F
2
functermclem.2
⊢
φ
→
F
R
L
↔
L
=
G
3
simpr
⊢
φ
∧
K
R
L
→
K
R
L
4
1
3
eqbrtrrd
⊢
φ
∧
K
R
L
→
F
R
L
5
2
biimpa
⊢
φ
∧
F
R
L
→
L
=
G
6
4
5
syldan
⊢
φ
∧
K
R
L
→
L
=
G
7
1
6
jca
⊢
φ
∧
K
R
L
→
K
=
F
∧
L
=
G
8
simprl
⊢
φ
∧
K
=
F
∧
L
=
G
→
K
=
F
9
2
biimpar
⊢
φ
∧
L
=
G
→
F
R
L
10
9
adantrl
⊢
φ
∧
K
=
F
∧
L
=
G
→
F
R
L
11
8
10
eqbrtrd
⊢
φ
∧
K
=
F
∧
L
=
G
→
K
R
L
12
7
11
impbida
⊢
φ
→
K
R
L
↔
K
=
F
∧
L
=
G