Metamath Proof Explorer


Theorem funen1cnv

Description: If a function is equinumerous to ordinal 1, then its converse is also a function. (Contributed by BTernaryTau, 8-Oct-2023)

Ref Expression
Assertion funen1cnv FunFF1𝑜FunF-1

Proof

Step Hyp Ref Expression
1 en1 F1𝑜pF=p
2 funrel FunpRelp
3 vsnid pp
4 elrel Relpppxyp=xy
5 2 3 4 sylancl Funpxyp=xy
6 sneq p=xyp=xy
7 6 2eximi xyp=xyxyp=xy
8 5 7 syl Funpxyp=xy
9 funcnvsn Funxy-1
10 9 gen2 xyFunxy-1
11 19.29r2 xyp=xyxyFunxy-1xyp=xyFunxy-1
12 cnveq p=xyp-1=xy-1
13 12 funeqd p=xyFunp-1Funxy-1
14 13 biimpar p=xyFunxy-1Funp-1
15 14 exlimivv xyp=xyFunxy-1Funp-1
16 11 15 syl xyp=xyxyFunxy-1Funp-1
17 8 10 16 sylancl FunpFunp-1
18 17 ax-gen pFunpFunp-1
19 19.29r pF=ppFunpFunp-1pF=pFunpFunp-1
20 funeq F=pFunFFunp
21 cnveq F=pF-1=p-1
22 21 funeqd F=pFunF-1Funp-1
23 20 22 imbi12d F=pFunFFunF-1FunpFunp-1
24 23 biimpar F=pFunpFunp-1FunFFunF-1
25 24 exlimiv pF=pFunpFunp-1FunFFunF-1
26 19 25 syl pF=ppFunpFunp-1FunFFunF-1
27 18 26 mpan2 pF=pFunFFunF-1
28 1 27 sylbi F1𝑜FunFFunF-1
29 28 impcom FunFF1𝑜FunF-1