Metamath Proof Explorer


Theorem funen1cnv

Description: If a function is equinumerous to ordinal 1, then its converse is also a function. (Contributed by BTernaryTau, 8-Oct-2023)

Ref Expression
Assertion funen1cnv Fun F F 1 𝑜 Fun F -1

Proof

Step Hyp Ref Expression
1 en1 F 1 𝑜 p F = p
2 funrel Fun p Rel p
3 vsnid p p
4 elrel Rel p p p x y p = x y
5 2 3 4 sylancl Fun p x y p = x y
6 sneq p = x y p = x y
7 6 2eximi x y p = x y x y p = x y
8 5 7 syl Fun p x y p = x y
9 funcnvsn Fun x y -1
10 9 gen2 x y Fun x y -1
11 19.29r2 x y p = x y x y Fun x y -1 x y p = x y Fun x y -1
12 cnveq p = x y p -1 = x y -1
13 12 funeqd p = x y Fun p -1 Fun x y -1
14 13 biimpar p = x y Fun x y -1 Fun p -1
15 14 exlimivv x y p = x y Fun x y -1 Fun p -1
16 11 15 syl x y p = x y x y Fun x y -1 Fun p -1
17 8 10 16 sylancl Fun p Fun p -1
18 17 ax-gen p Fun p Fun p -1
19 19.29r p F = p p Fun p Fun p -1 p F = p Fun p Fun p -1
20 funeq F = p Fun F Fun p
21 cnveq F = p F -1 = p -1
22 21 funeqd F = p Fun F -1 Fun p -1
23 20 22 imbi12d F = p Fun F Fun F -1 Fun p Fun p -1
24 23 biimpar F = p Fun p Fun p -1 Fun F Fun F -1
25 24 exlimiv p F = p Fun p Fun p -1 Fun F Fun F -1
26 19 25 syl p F = p p Fun p Fun p -1 Fun F Fun F -1
27 18 26 mpan2 p F = p Fun F Fun F -1
28 1 27 sylbi F 1 𝑜 Fun F Fun F -1
29 28 impcom Fun F F 1 𝑜 Fun F -1