Description: If a function is equinumerous to ordinal 1, then its converse is also a function. (Contributed by BTernaryTau, 8-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | funen1cnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 | |
|
2 | funrel | |
|
3 | vsnid | |
|
4 | elrel | |
|
5 | 2 3 4 | sylancl | |
6 | sneq | |
|
7 | 6 | 2eximi | |
8 | 5 7 | syl | |
9 | funcnvsn | |
|
10 | 9 | gen2 | |
11 | 19.29r2 | |
|
12 | cnveq | |
|
13 | 12 | funeqd | |
14 | 13 | biimpar | |
15 | 14 | exlimivv | |
16 | 11 15 | syl | |
17 | 8 10 16 | sylancl | |
18 | 17 | ax-gen | |
19 | 19.29r | |
|
20 | funeq | |
|
21 | cnveq | |
|
22 | 21 | funeqd | |
23 | 20 22 | imbi12d | |
24 | 23 | biimpar | |
25 | 24 | exlimiv | |
26 | 19 25 | syl | |
27 | 18 26 | mpan2 | |
28 | 1 27 | sylbi | |
29 | 28 | impcom | |