Metamath Proof Explorer


Theorem funpartss

Description: The functional part of F is a subset of F . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion funpartss ⊒π–₯π—Žπ—‡π–―π–Ίπ—‹π—FβŠ†F

Proof

Step Hyp Ref Expression
1 df-funpart ⊒π–₯π—Žπ—‡π–―π–Ίπ—‹π—F=Fβ†Ύdom⁑𝖨𝗆𝖺𝗀𝖾Fβˆ˜π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡βˆ©VΓ—π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡π—Œ
2 resss ⊒Fβ†Ύdom⁑𝖨𝗆𝖺𝗀𝖾Fβˆ˜π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡βˆ©VΓ—π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡π—ŒβŠ†F
3 1 2 eqsstri ⊒π–₯π—Žπ—‡π–―π–Ίπ—‹π—FβŠ†F