Metamath Proof Explorer


Theorem funresfunco

Description: Composition of two functions, generalization of funco . (Contributed by Alexander van der Vekens, 25-Jul-2017)

Ref Expression
Assertion funresfunco FunFranGFunGFunFG

Proof

Step Hyp Ref Expression
1 funco FunFranGFunGFunFranGG
2 ssid ranGranG
3 cores ranGranGFranGG=FG
4 2 3 ax-mp FranGG=FG
5 4 eqcomi FG=FranGG
6 5 funeqi FunFGFunFranGG
7 1 6 sylibr FunFranGFunGFunFG