Metamath Proof Explorer


Theorem fununfun

Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019)

Ref Expression
Assertion fununfun FunFGFunFFunG

Proof

Step Hyp Ref Expression
1 funrel FunFGRelFG
2 relun RelFGRelFRelG
3 1 2 sylib FunFGRelFRelG
4 simpl RelFRelGRelF
5 fununmo FunFG*yxFy
6 5 alrimiv FunFGx*yxFy
7 4 6 anim12i RelFRelGFunFGRelFx*yxFy
8 dffun6 FunFRelFx*yxFy
9 7 8 sylibr RelFRelGFunFGFunF
10 simpr RelFRelGRelG
11 uncom FG=GF
12 11 funeqi FunFGFunGF
13 fununmo FunGF*yxGy
14 12 13 sylbi FunFG*yxGy
15 14 alrimiv FunFGx*yxGy
16 10 15 anim12i RelFRelGFunFGRelGx*yxGy
17 dffun6 FunGRelGx*yxGy
18 16 17 sylibr RelFRelGFunFGFunG
19 9 18 jca RelFRelGFunFGFunFFunG
20 3 19 mpancom FunFGFunFFunG