Metamath Proof Explorer


Theorem fvclss

Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995)

Ref Expression
Assertion fvclss y|xy=FxranF

Proof

Step Hyp Ref Expression
1 eqcom y=FxFx=y
2 tz6.12i yFx=yxFy
3 1 2 biimtrid yy=FxxFy
4 3 eximdv yxy=FxxxFy
5 vex yV
6 5 elrn yranFxxFy
7 4 6 imbitrrdi yxy=FxyranF
8 7 com12 xy=FxyyranF
9 8 necon1bd xy=Fx¬yranFy=
10 velsn yy=
11 9 10 imbitrrdi xy=Fx¬yranFy
12 11 orrd xy=FxyranFy
13 12 ss2abi y|xy=Fxy|yranFy
14 df-un ranF=y|yranFy
15 13 14 sseqtrri y|xy=FxranF