Metamath Proof Explorer


Theorem fvconst2

Description: The value of a constant function. (Contributed by NM, 16-Apr-2005)

Ref Expression
Hypothesis fvconst2.1 BV
Assertion fvconst2 CAA×BC=B

Proof

Step Hyp Ref Expression
1 fvconst2.1 BV
2 fvconst2g BVCAA×BC=B
3 1 2 mpan CAA×BC=B