Metamath Proof Explorer


Theorem fvelimabd

Description: Deduction form of fvelimab . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fvelimabd.1 φFFnA
fvelimabd.2 φBA
Assertion fvelimabd φCFBxBFx=C

Proof

Step Hyp Ref Expression
1 fvelimabd.1 φFFnA
2 fvelimabd.2 φBA
3 fvelimab FFnABACFBxBFx=C
4 1 2 3 syl2anc φCFBxBFx=C