Metamath Proof Explorer


Theorem fvilbd

Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypothesis fvilbd.r φ R V
Assertion fvilbd φ R I R

Proof

Step Hyp Ref Expression
1 fvilbd.r φ R V
2 ssid R R
3 fvi R V I R = R
4 1 3 syl φ I R = R
5 2 4 sseqtrrid φ R I R