Metamath Proof Explorer


Theorem fvpr2g

Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Proof shortened by BJ, 26-Sep-2024)

Ref Expression
Assertion fvpr2g BVDWABACBDB=D

Proof

Step Hyp Ref Expression
1 prcom ACBD=BDAC
2 1 fveq1i ACBDB=BDACB
3 necom ABBA
4 fvpr1g BVDWBABDACB=D
5 3 4 syl3an3b BVDWABBDACB=D
6 2 5 eqtrid BVDWABACBDB=D