Metamath Proof Explorer


Theorem fvtp1g

Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017)

Ref Expression
Assertion fvtp1g AVDWABACADBECFA=D

Proof

Step Hyp Ref Expression
1 df-tp ADBECF=ADBECF
2 1 fveq1i ADBECFA=ADBECFA
3 necom ACCA
4 fvunsn CAADBECFA=ADBEA
5 3 4 sylbi ACADBECFA=ADBEA
6 5 ad2antll AVDWABACADBECFA=ADBEA
7 fvpr1g AVDWABADBEA=D
8 7 3expa AVDWABADBEA=D
9 8 adantrr AVDWABACADBEA=D
10 6 9 eqtrd AVDWABACADBECFA=D
11 2 10 eqtrid AVDWABACADBECFA=D