Metamath Proof Explorer


Theorem fz1sump1

Description: Add one more term to a sum. Special case of fsump1 generalized to N e. NN0 . (Contributed by SN, 22-Mar-2025)

Ref Expression
Hypotheses fz1sump1.n φN0
fz1sump1.a φk1N+1A
fz1sump1.s k=N+1A=B
Assertion fz1sump1 φk=1N+1A=k=1NA+B

Proof

Step Hyp Ref Expression
1 fz1sump1.n φN0
2 fz1sump1.a φk1N+1A
3 fz1sump1.s k=N+1A=B
4 nn0p1nn N0N+1
5 1 4 syl φN+1
6 nnuz =1
7 5 6 eleqtrdi φN+11
8 7 2 3 fsumm1 φk=1N+1A=k=1N+1-1A+B
9 1 nn0cnd φN
10 1cnd φ1
11 9 10 pncand φN+1-1=N
12 11 oveq2d φ1N+1-1=1N
13 12 sumeq1d φk=1N+1-1A=k=1NA
14 13 oveq1d φk=1N+1-1A+B=k=1NA+B
15 8 14 eqtrd φk=1N+1A=k=1NA+B