Metamath Proof Explorer


Theorem fzonn0p1p1

Description: If a nonnegative integer is element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018)

Ref Expression
Assertion fzonn0p1p1 I 0 ..^ N I + 1 0 ..^ N + 1

Proof

Step Hyp Ref Expression
1 elfzo0 I 0 ..^ N I 0 N I < N
2 peano2nn0 I 0 I + 1 0
3 2 3ad2ant1 I 0 N I < N I + 1 0
4 peano2nn N N + 1
5 4 3ad2ant2 I 0 N I < N N + 1
6 simp3 I 0 N I < N I < N
7 nn0re I 0 I
8 nnre N N
9 1red I < N 1
10 ltadd1 I N 1 I < N I + 1 < N + 1
11 7 8 9 10 syl3an I 0 N I < N I < N I + 1 < N + 1
12 6 11 mpbid I 0 N I < N I + 1 < N + 1
13 elfzo0 I + 1 0 ..^ N + 1 I + 1 0 N + 1 I + 1 < N + 1
14 3 5 12 13 syl3anbrc I 0 N I < N I + 1 0 ..^ N + 1
15 1 14 sylbi I 0 ..^ N I + 1 0 ..^ N + 1