Metamath Proof Explorer


Theorem fzosplitsn

Description: Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion fzosplitsn BAA..^B+1=A..^BB

Proof

Step Hyp Ref Expression
1 id BABA
2 eluzelz BAB
3 uzid BBB
4 peano2uz BBB+1B
5 2 3 4 3syl BAB+1B
6 elfzuzb BAB+1BAB+1B
7 1 5 6 sylanbrc BABAB+1
8 fzosplit BAB+1A..^B+1=A..^BB..^B+1
9 7 8 syl BAA..^B+1=A..^BB..^B+1
10 fzosn BB..^B+1=B
11 2 10 syl BAB..^B+1=B
12 11 uneq2d BAA..^BB..^B+1=A..^BB
13 9 12 eqtrd BAA..^B+1=A..^BB