Metamath Proof Explorer


Theorem fzosump1

Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses fsumm1.1 φNM
fsumm1.2 φkMNA
fsumm1.3 k=NA=B
Assertion fzosump1 φkM..^N+1A=kM..^NA+B

Proof

Step Hyp Ref Expression
1 fsumm1.1 φNM
2 fsumm1.2 φkMNA
3 fsumm1.3 k=NA=B
4 eluzelz NMN
5 1 4 syl φN
6 fzoval NM..^N=MN1
7 5 6 syl φM..^N=MN1
8 7 sumeq1d φkM..^NA=k=MN1A
9 8 oveq1d φkM..^NA+B=k=MN1A+B
10 1 2 3 fsumm1 φk=MNA=k=MN1A+B
11 fzval3 NMN=M..^N+1
12 5 11 syl φMN=M..^N+1
13 12 sumeq1d φk=MNA=kM..^N+1A
14 9 10 13 3eqtr2rd φkM..^N+1A=kM..^NA+B