Metamath Proof Explorer


Theorem fzpred

Description: Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019)

Ref Expression
Assertion fzpred NMMN=MM+1N

Proof

Step Hyp Ref Expression
1 eluzel2 NMM
2 uzid MMM
3 peano2uz MMM+1M
4 1 2 3 3syl NMM+1M
5 fzsplit2 M+1MNMMN=MMM+1N
6 4 5 mpancom NMMN=MMM+1N
7 fzsn MMM=M
8 1 7 syl NMMM=M
9 8 uneq1d NMMMM+1N=MM+1N
10 6 9 eqtrd NMMN=MM+1N