Metamath Proof Explorer


Theorem fzsubel

Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005)

Ref Expression
Assertion fzsubel MNJKJMNJKMKNK

Proof

Step Hyp Ref Expression
1 znegcl KK
2 fzaddel MNJKJMNJ+KM+KN+K
3 1 2 sylanr2 MNJKJMNJ+KM+KN+K
4 zcn MM
5 zcn NN
6 4 5 anim12i MNMN
7 zcn JJ
8 zcn KK
9 7 8 anim12i JKJK
10 negsub JKJ+K=JK
11 10 adantl MNJKJ+K=JK
12 negsub MKM+K=MK
13 negsub NKN+K=NK
14 12 13 oveqan12d MKNKM+KN+K=MKNK
15 14 anandirs MNKM+KN+K=MKNK
16 15 adantrl MNJKM+KN+K=MKNK
17 11 16 eleq12d MNJKJ+KM+KN+KJKMKNK
18 6 9 17 syl2an MNJKJ+KM+KN+KJKMKNK
19 3 18 bitrd MNJKJMNJKMKNK