Metamath Proof Explorer


Theorem gaid2

Description: A group operation is a left group action of the group on itself. (Contributed by FL, 17-May-2010) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses gaid2.1 X=BaseG
gaid2.2 +˙=+G
gaid2.3 F=xX,yXx+˙y
Assertion gaid2 GGrpFGGrpActX

Proof

Step Hyp Ref Expression
1 gaid2.1 X=BaseG
2 gaid2.2 +˙=+G
3 gaid2.3 F=xX,yXx+˙y
4 1 subgid GGrpXSubGrpG
5 eqid G𝑠X=G𝑠X
6 1 2 5 3 subgga XSubGrpGFG𝑠XGrpActX
7 4 6 syl GGrpFG𝑠XGrpActX
8 1 ressid GGrpG𝑠X=G
9 8 oveq1d GGrpG𝑠XGrpActX=GGrpActX
10 7 9 eleqtrd GGrpFGGrpActX